首页> 外文OA文献 >Full-Resolution Residual Networks for Semantic Segmentation in Street Scenes
【2h】

Full-Resolution Residual Networks for Semantic Segmentation in Street Scenes

机译:街道语义分割的全分辨率剩余网络   场景

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Semantic image segmentation is an essential component of modern autonomousdriving systems, as an accurate understanding of the surrounding scene iscrucial to navigation and action planning. Current state-of-the-art approachesin semantic image segmentation rely on pre-trained networks that were initiallydeveloped for classifying images as a whole. While these networks exhibitoutstanding recognition performance (i.e., what is visible?), they lacklocalization accuracy (i.e., where precisely is something located?). Therefore,additional processing steps have to be performed in order to obtainpixel-accurate segmentation masks at the full image resolution. To alleviatethis problem we propose a novel ResNet-like architecture that exhibits stronglocalization and recognition performance. We combine multi-scale context withpixel-level accuracy by using two processing streams within our network: Onestream carries information at the full image resolution, enabling preciseadherence to segment boundaries. The other stream undergoes a sequence ofpooling operations to obtain robust features for recognition. The two streamsare coupled at the full image resolution using residuals. Without additionalprocessing steps and without pre-training, our approach achieves anintersection-over-union score of 71.8% on the Cityscapes dataset.
机译:语义图像分割是现代自动驾驶系统的重要组成部分,因为对周围场景的准确了解对于导航和行动计划至关重要。当前语义图像分割的最新技术依赖于预先训练的网络,这些网络最初是为将图像进行整体分类而开发的。尽管这些网络表现出出色的识别性能(即可见的东西?),但它们缺乏定位精度(即某物的确切位置在哪里?)。因此,必须执行附加的处理步骤以便以全图像分辨率获得像素精确的分割掩模。为了缓解此问题,我们提出了一种新颖的类似于ResNet的体系结构,该体系结构具有强大的本地化和识别性能。我们通过在网络中使用两个处理流,将多尺度上下文与像素级精度结合在一起:Onestream以全图像分辨率传输信息,从而能够精确地遵守分割边界。另一个流经过一系列的合并操作,以获得用于识别的鲁棒特征。两个流使用残差以全图像分辨率耦合。在没有其他处理步骤且没有预先训练的情况下,我们的方法在Cityscapes数据集上的交叉口与联合的得分达到71.8%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号